Advanced CFB technology for utilization of standardized SRF

Juha Sarkki
Foster Wheeler
juha.sarkki@fwfin.fwc.com

RECOMBIO final conference
June 13, 2013, Helsinki
Foster Wheeler AG, Business Groups

The Global Engineering & Construction (E&C) Group

Designing, constructing, and managing projects for some of the world’s largest process plants in a wide range of industries, including oil and gas, chemicals, and pharmaceuticals.

The Global Power Group

Designing, manufacturing, and erecting a full line of boilers, and environmental products for utility, industrial, and cogeneration clients. A world-leading expert in combustion technology.
A global business with approximately 3,000 highly-skilled people
World Leader in Fluidized Bed Combustion (CFB) Technology

- First BFB boilers delivered in the 1970s, and world’s first CFB boiler supplied in 1979.
- World’s first once-through supercritical CFB boiler started operation in 2009 in Lagisza, Poland.
- Flexi-Burn® - air/oxy flexible CFB boiler commercially available by the end of 2013.
- CFB boiler fuel flexibility and multifuel capability provide for efficient utilization of fossil and renewable fuels.
- 111 Biomass CFB boilers (full biomass and co-combustion)
- Biggest units under construction 550 MWe Benson supercritical CFBs for coal in Korea

411 - Circulating fluid bed (CFB) boilers
- 375 delivered
- 36 under construction
- Biggest unit in operation 460 MWe

136 - Bubbling fluidized bed (BFB) boilers
- 136 delivered

11 - Atmospheric fluidized bed gasifiers
- 11 delivered

PKE Lagisza, Poland
Äånevoima Oy, Finland
Lahti Energia, Finland

RECOMBIO final conference June 13, 2013, Helsinki
Foster Wheeler Global Power Reference Base
2,533 Units - over 220 GWe

Total Sold FW Units

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>331</td>
<td>109,801</td>
</tr>
<tr>
<td>CFB</td>
<td>411</td>
<td>31,854</td>
</tr>
<tr>
<td>Oil & Gas</td>
<td>324</td>
<td>41,462</td>
</tr>
<tr>
<td>HRSG</td>
<td>410</td>
<td>26,290</td>
</tr>
<tr>
<td>Industrial</td>
<td>1,007</td>
<td>14,445</td>
</tr>
<tr>
<td>Solar</td>
<td>50</td>
<td>2,209</td>
</tr>
<tr>
<td>Total</td>
<td>2,533</td>
<td>220,061</td>
</tr>
</tbody>
</table>

- Circulating Fluidized Bed (CFB) Boilers
- Bubbling Fluidized Bed (BFB) Boilers
- Heat Recovery Steam Generators
- Waste Heat Boilers
- PC Boilers
- Gasifires
Kauttua 65 MWth, 25 kg/s, 83 barg, 500 °C

Co-firing REF with wood residue, peat and coal
Burn tests of used packaging in 1992-1993
Fuel map in 1998
CFB Technology opens the door to Fuel Flexibility and Carbon Neutral Fuels

Heating Value, MJ/kg

- PETROLEUM COKE
- ANTRACITE COAL
- BITUMINOUS COAL
- BROWN COAL, LIGNITE
- PEAT
- WASTE COAL
- BARK
- POLYOLEFIN PLASTICS (PE, PP, PC..)
- COLORED OR PRINTED PLASTICS, CLEAN
- COLORED OR PRINTED MIXED PLASTICS
- RDF
- CONSUMER SRF
- MIXED PLASTICS
- WOOD & PLASTICS
- PAPER & WOOD
- OIL SHALE
- SEWAGE SLUDGE
- DEINKING SLUDGE
- BIO & FIBER SLUDGE
- PLASTICS
- BROWN COAL, LIGNITE
- COAL
- PETROLEUM
- OIL
- SHALE

Burning Difficulty

CFB Fuel Range

RECOMBIO final conference June 13, 2013, Helsinki
FW’s multiple Boiler Concepts for waste fuels and biomass

- Söderenergi
 - IKV
 - Demolition wood up to 100%
 - REF < 25%
 - CFB
 - Intrex™
 - Short empty pass
 - Easily exchangable superheaters

- Mälarenergi
 - Bio fuels with low portion of recycled fuels
 - BFB/CFB

- Lomellina II
 - Bio fuels with low portion of recycled fuels
 - BFB/CFB

- Prokon Nord
 - RDF&REF
 - CFB
 - Intrex™
 - Easily exchangable superheaters
 - Empty pass
 - Water cannons in empty pass
 - Stoker fuel feeding
 - Spring hammer SH soot blowing

St Ambrose

Steam parameters

Challenging fuel

Fuel class

Easy fuel

RECOMBIO final conference June 13, 2013, Helsinki
Design Basis of FW CFB Concept for waste fuels

 RDF
 59 MW_{St}, 24.1 kg/s, 62 bar, 443°C

- Viken Energinett (2001)
 SRF (selected high calorif. ind. fractions)
 34.5 MW_{t}, 16 bar, 204°C

- Högdalen (2000)
 REF
 91 MW_{St}, 31.8 kg/s, 60 bar, 480°C

- >30 CFB references for co-firing various types of waste

- 10 Altholz plants in Germany, Holland and Belgium (1996-2010)
 60-100 MW_{St}, 90 bar, 520°C

CFB-Concept for SRF and RDF
Multifuel CFB for Waste and Clean Biomass (CHP)
Igelsta (Söderenergi AB, Södertälje)

240 MW$_{th}$, 73 MW$_{e-net}$, 209 MW$_{DH}$, 92 kg/s, 90 bar, 540 C

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass [%]$_{LHV}$</td>
<td>75</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Rec.wood [%]$_{LHV}$</td>
<td>0</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>REF pellets [%]$_{LHV}$</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moisture [%]$_{ar}$</td>
<td>44.3</td>
<td>35.6</td>
<td>50.0</td>
</tr>
<tr>
<td>Ash [%]$_{dry}$</td>
<td>6.5</td>
<td>4.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Nitrogen [%]$_{dry}$</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfur [%]$_{dry}$</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Chlorine [ppm]$_{dry}$</td>
<td>1200</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>LHV [MJ/kg]$_{ar}$</td>
<td>9.7</td>
<td>11.0</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Total plant efficiency ~110%$_{LHV}$ = 90%$_{HHV}$

<table>
<thead>
<tr>
<th>Emissions</th>
<th>6%O$_2$, dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_x$ [mg/MJ]</td>
<td>35*</td>
</tr>
<tr>
<td>SO$_2$ [mg/m3n]</td>
<td>75</td>
</tr>
<tr>
<td>CO [mg/m3n]</td>
<td>50*</td>
</tr>
<tr>
<td>Dust [mg/m3n]</td>
<td>10</td>
</tr>
<tr>
<td>NH$_3$ ppm</td>
<td>10</td>
</tr>
<tr>
<td>TOC [mg/m3n]</td>
<td>10</td>
</tr>
<tr>
<td>HCl / HF [mg/m3n]</td>
<td>10 / 1</td>
</tr>
<tr>
<td>Cd+Tl / Hg / HM [mg/m3n]</td>
<td>0.05 / 0.05 / 0.5</td>
</tr>
<tr>
<td>PCDD+F [ng/m3n]</td>
<td>0.1</td>
</tr>
</tbody>
</table>

*) only at 100% load with Mix 1, 2, and 3
RDF FIRED CFB BOILER
E.ON Värme Sverige AB, Norrköping, Sweden

85 MWth, 30 MWe, 31 kg/s, 66 bar, 450 °C

FUEL DATA

Refuse Delivered Fuel (RDF)
Sulphur 0.3 % ds
Chlorine 0.9 % ds
Moisture 27%
Ash (as received) 14.3%
LHV (as received) 12.9 MJ/kg

DESIGN PERFORMANCE, O₂ 11%
in dry gases

Flue Gas Exit Temperature 168 °C
Boiler Efficiency 90.2%
Emissions
- NOₓ < 35 mg/MJ
- CO < 50 mg/Nm³

- Biomass based combustible fraction is 60 % of RDF
Emission permit values

<table>
<thead>
<tr>
<th></th>
<th>mg/Nm^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust</td>
<td>10</td>
</tr>
<tr>
<td>CO</td>
<td>50</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>50</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>200</td>
</tr>
<tr>
<td>Total C</td>
<td>10</td>
</tr>
<tr>
<td>HCl</td>
<td>10</td>
</tr>
<tr>
<td>HF</td>
<td>0.5</td>
</tr>
<tr>
<td>Cd, Tl</td>
<td>0.05</td>
</tr>
<tr>
<td>Hg</td>
<td>0.05</td>
</tr>
<tr>
<td>Heavy metals: Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn</td>
<td>0.5</td>
</tr>
<tr>
<td>PCDD/PCDF</td>
<td>0.1</td>
</tr>
</tbody>
</table>

RECOMBIO final conference June 13, 2013, Helsinki
Fuel feeding
Intrex SH
Spring Hammers: Idle pass & Horizontal pass
Tube bank with FW-spring hammer cleaning

FEATURES:
• spring anvil raises the frequency but conveys high impact force
• sequence controlled (10 blows at a time - waiting time adjusted)
• no steam consumption
Bottom Ash Removal System

Bottom ash removal system:
- Discharge chutes
- Water-cooled bottom ash screws
- Rotating Screen
- Coarse material from screen to bottom ash container
- Reinjection of fine material to furnace
Heating value of SRF vs time

Calculated & analysed LHV [kJ/kg]

Date

RECOMBIO final conference June 13, 2013, Helsinki
Combustion Technology: Fuel spec

Boiler supplier in flow chain for SRF
SRF standard in use

- Common definition of SRF for the supplier and the customer
- Improved understanding of SRF as fuel
- Improved business environment for WtE applications
- Model for good practice
- Link between waste and power
- Testing methods for characterization of SRF
- Tools for quality assurance
- Product improvement and development
Standards provide tools for SRF with consistent quality and quantified properties

Foster Wheeler CFB technology is a proven solution for SRF in power generation with high steam parameters and with good emission performance